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Figure 1: Overview of the automatic pipeline for generating high quality characters. Input is a set of photos of one’s face and the output is a
fully rigged character. The face is first reconstructed using photogrammetry and automatic landmarking. A generic face is then automatically
registered on top while the color of the iris is extracted. Extra-geometry such as jaws, teeth, or nostrils are transferred. Blendshapes are
transferred from the generic face. Facial and eye texture are applied to the registered mesh. The face is eventually merged to the generic body.
Facial characteristics may also be extracted to apply the unique facial morphology to a non-human character.

ABSTRACT

In this paper, we present a fully automatic pipeline for generating
and stylizing high geometric and textural quality facial rigs. They
are automatically rigged with facial blendshapes for animation, and
can be used across platforms for applications including virtual re-
ality, augmented reality, remote collaboration, gaming and more.
From a set of input facial photos, our approach is to be able to cre-
ate a photorealistic, fully rigged character in less than seven min-
utes. The facial mesh reconstruction is based on state-of-the art
photogrammetry approaches. Automatic landmarking coupled with
ICP registration with regularization provide direct correspondence
and registration from a given generic mesh to the acquired facial
mesh. Then, using deformation transfer, existing blendshapes are
transferred from the generic to the reconstructed facial mesh. The
reconstructed face is then fit to the full body generic mesh. Extra
geometry such as jaws, teeth and nostrils are retargeted and trans-
ferred to the character. An automatic iris color extraction algorithm
is performed to colorize a separate eye texture, animated with dy-
namic UVs. Finally, an extra step applies a style to the photorealis-
tic face to enable blending of personalized facial features into any
other character. The user’s face can then be adapted to any human
or non-human generic mesh. A pilot user study was performed to
evaluate the utility of our approach. Up to 65% of the participants
were successfully able to discern the presence of one’s unique facial
features when the style was not too far from a humanoid shape.

Keywords: character, animation, pipeline, virtual reality

Index Terms: I.2.10 [artificial intelligence]: Vision and
Scene Understanding—Intensity, color, photometry, and threshold-
ing; I.3.7 [computer graphics]: Three-Dimensional Graphics and
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Realism—Animation

1 INTRODUCTION

Digital humans are key aspects of the rapidly evolving areas of
virtual reality, augmented reality, virtual production and gaming.
Even outside of the entertainment world, they are becoming more
and more commonplace in retail, sports, social media, education,
health and many other fields. In the context of virtual reality, the
digital personalized representation of the user highly increases im-
mersion, presence and emotional response [38]. However, the fast
creation of photorealistic characters is still challenging. Setting up
a facial rig remains a long, manual and tedious artistic task. This is
because people are extremely sensitive to subtle variations in facial
morphology. The well-known concept of the uncanny valley encap-
sulates the central challenge in creating digital humans in general,
and especially digital doubles of real people [32]. Many current
solutions avoid this problem by skewing towards a very stylized
or abstracted character. Nonetheless, our digital lives are increas-
ingly intertwined with our identities. Setting up a quick, automated
and photoreal facial rig pipeline for real-time usage encompasses
many important scientific and technical challenges. The geometry,
the texture, the material of the face and all of the extra geometry
elements (eyes, jaws, teeth, etc.) must be properly captured and
modeled.

Capturing the 3D static mesh of a face in high resolution with
high-frequency details remains a key-issue. It has been studied for
decades and still suffers from expensive and bulky hardware to set
up, a long capture protocol to capture all the deformations of the
face, and significant computation time to reconstruct meshes and
textures. Photogrammetry has become increasingly popular in vi-
sual effects pipelines for almost every aspect of production, starting
from the capture of a film set for previsualization and reference for
artists [44], to the creation of digital doubles for starring actors [9].
This makes photogrammetry a favorable choice for creating photo-
realistic virtual humans [1].

In addition to the steps of capture and modeling, the ideal



pipeline would also allow the blending of the constructed facial
morphology with any other style of character. Blending person-
alized facial features into other characters extends the use cases be-
yond photoreal facsimiles of people, which are useful but limited
in context. One can imagine many entertainment and gaming ap-
plications for embodying characters from favorite science fiction or
fantasy worlds and infusing those creatures with one’s own facial
morphology.

In this context, this paper presents two contributions:

1. A complete automatic pipeline for the creation of high qual-
ity facial rigs. It relies on state-of-the-art photogrammetry,
facial landmarking, mesh registration and deformation trans-
fer algorithms. To the best of our knowledge, this is the first
combination of these algorithms into an automatic system.

2. A novel style transfer method for facial meshes. Geometry
and texture are modified and adapted to match a specific con-
tent. We have conducted a preliminary pilot study to identify
the possibilities of such an approach with both humanoid and
non-humanoid faces.

2 RELATED WORK

We first review techniques for acquiring the geometry and appear-
ance of a face. In a second section, we detail existing approaches
for facial animation. Then we survey the existing pipelines for cre-
ating real-time characters. Finally, research results of the recent
field of style transfer are detailed.

2.1 Facial acquisition

The problem of facial acquisition can be split into 3D facial geom-
etry acquisition, and facial appearance acquisition.

The methods for 3D facial geometry capture developed in the
last two decades can be divided into active and passive systems.
Active capture systems require special-purpose hardware, and ex-
tra constraints in setup. Such systems are usually based on laser,
structured light, gradient-based illumination [24], or even requiring
spatial multiplexing [41]. While the results they provide are often
very robust, passive systems are much more versatile and adaptive,
allowing different arrangements of setup, numbers of camera, and
virtually no constraint on camera position [3]. Passive techniques
have the advantage of non-intrusiveness and capture what is ob-
served. Beeler et al. presented a passive stereo vision system that
computes the accurate 3D geometry of the face with a laser scan-
ner [3]. This work makes assumption of constant omni-directional
illumination. This constraint can be released by estimating the en-
vironment map [42].

Facial appearance acquisition is the way to record the complex
interaction of the light with the skin. Two general categories of
such methods are distinguished: image-based methods and para-
metric methods. Image-based methods exhaustively capture the ex-
act face appearance under various lighting and viewing conditions,
and then solve the rendering problem through weighted image com-
binations [17]. Whereas the parametric methods aim at modeling
the structure of the skin with suitable approximations. Such rep-
resentation is more flexible but at the cost of a potentially inexact
reproduction [11, 13].

Photogrammetry is an image-based passive system [3]. Thus,
with a simple setup, a precise model and a basic skin texture can be
captured.

2.2 Facial animation by deformation transfer

Facial animation can be achieved by a large variety of different
methods: skeletons and joints [25], physically-based muscle mod-
els [39] and combinations of blendshapes [5]. While every method
has a fitting application, using linear blendshape models is the most

widely spread approach for high fidelity facial animation. Com-
bining a set of blendshapes produces an arbitrary facial expression.
Creating high quality blendshapes is time-consuming and tedious,
requiring either high quality motion capture of real actor (and sub-
sequent cleanup and post production) or manual modeling. How-
ever, they can be transferred from one model to another with de-
formation transfer [34]. This method requires triangle correspon-
dences between source and target meshes, which is problematic if
meshes have different topology. Pawaskar et al. proposed a tech-
nique to transfer blendshapes to a target mesh by first registering
source mesh into target mesh using a non-rigid ICP (iterative clos-
est point) algorithm, and then transferring deformation to a new
target mesh that has direct triangle-wise correspondence [30].

2.3 Full pipeline for character creation

Malleson et al. recently proposed a pipeline for the rapid creation
of VR avatars [26]. They capture a single picture of a face which is
fit to a rigged template avatar. As they only use one stereo DSLR
camera, parallax does not allow to finely acquire the topology of the
face and reconstruct a precise mesh. They compared their results to
photogrammetric scans that highlight missing geometric features
such as the shape of the nose. Nagano et al. relied on a single im-
age and deep learning (GAN) to generate a virtual face [29]. The
accuracy of the geometrical reconstruction is thus limited although
producing plausible results. A pipeline for a full body capture has
been set up by Achenbach et al. [1]. They used two camera rigs, one
for the body (40 cameras) and a second one for the face (eight cam-
eras). A rigged template mesh is fit to the two captured point clouds.
The full process takes ten minutes according to the authors. They
have evaluated the realism of the captured avatar and observed that
such an avatar improves the feeling of body ownership but might
also look uncanny [19]. The authors pointed out that the face is a
crucial part of the avatar but did not study it in detail. In a way,
our approach is comparable to their pipeline, but we focus only on
the face to capture a high-quality model, and to understand the ar-
tifacts that lead to an uncanny effect. Instead of using camera rigs,
characters can be computed from RGB-D videos. Alldieck et al.
fit a modified SMPL model to the body detected in each frame [2].
Even if the global results from a video are impressive, it turns out
to be hard to determine who are the individuals are without the tex-
ture. In a close-up VR experience, that would lead to too uncanny
results. While this approach requires a simple setup, the quality of
the reconstructed character is limited.

2.4 Style transfer

Image style transfer has recently known a breakthrough thanks to
deep neural networks. Gatys et al. make use of a classic VGG net-
work [12], and define the content of an image as its deep features,
and its style as its inter-features’ correlation (Gram matrices). Us-
ing a content image, and a style image, a third image can thus be
computed. Markov Random Fields in replacement of the Gram ma-
trices allows to control the image layout at a local level and make
the result more realistic [21]. This feature has allowed to extend the
method for facial texture transfer [16], for which certain facial fea-
tures must be preserved. It has also been showed that morphing the
face of the style image to the shape of the face of the content image
improves local features matching. Nevertheless, wrong matches
may occur and can be solved by semantics masks [7].

These works are however limited to images. First approaches
have recently investigated style transfer between 3D meshes. Ma
et al. made use of a style model (exemplar), a content model (tar-
get), and a model with the style of the target but the content of the
exemplar (source) [23]. The result is computed from these three
meshes: i) compute the transformation from the source to the target
by mapping subsets of these models with a point-to-point corre-
spondences with minimal deformations, ii) compute the transfor-



mation from the source to the exemplar, iii) approximates the trans-
formation from the exemplar to the result. In another method, Lun
et al. input a content shape and a style shape [22]. A hierarchical
segmentation of both is performed, followed by a matching of the
parts. Then the style distance is minimized by a set of operations,
substitution, addition, removal, and deformation, applied in that or-
der. Additionally, a functionality constraint is used, based on the
gross elements’ shapes. These two approaches are however limited
to simple objects (i.e. furniture).

3 PIPELINE FOR AUTOMATIC CREATION OF FACIAL RIGS

Our pipeline inputs multiple photos of someone’s face and a generic
rigged character (see Figure 2). It outputs the generic character
adapted to the captured face. The pipeline relies on Meshroom1,
an open source implementation of photogrammetry reconstruction
algorithms. We have extended it to enable the mesh registration, the
transfer of blendshapes and the mesh fitting to the generic body.

Figure 2: Example of a generic mesh: an astronaut. The face will be
modified to look like the user given pictures of his or her face.

3.1 Camera setup

The first step of our pipeline is the facial acquisition. Using guide-
lines for close range photogrammetry [37, 40] we have built a cap-
ture setup as illustrated on Figure 3. It is composed of 14 Canon
EOS 1300D DLSR cameras. Nine are equipped with a Canon EF
50mm prime (fixed focal length) lens and five with a Canon EF
85mm. The lighting system is composed of two Kino Flo Tegra
455 DMX (each composed of four neon lamps) and five LED pan-
els. All light sources are covered with light diffuser sheets to get
a more diffuse and homogeneous lighting. Triggering is hardware
synchronized. One essential aspect of photogrammetry is the fea-
tures matching between photos to form a single contiguous model.
To support such matching, a very strong overlap (+70%) is required
[37]. Our fourteen cameras ensure this overlap for capturing the
face from ear to ear (see Section 3.8.1).

During the capture, the seated subject is asked to look at the
frontal camera. This ensures that all captured faces are aligned in
the same coordinate system where the central camera is located at
its center. If needed, the height of the seat can be adjusted.

3.2 Meshing and texturing

The reconstruction process is based on the default pipeline of Mesh-
room for which minor elements were adjusted. First, feature ex-
traction based on SIFT descriptors is performed. Then, images are
matched based on a vocabulary tree of these descriptors. For each
pair of images, the features are also matched. From this data, the
rigid scene structure, as well as position and pose of the cameras,
are computed (structure for motion [28]). This allows to compute

1https://alicevision.github.io

Figure 3: Our photogrammetry setup for scanning users’ face com-
posed of fourteen DSLRs and seven light sources covered with dif-
fuser sheets.

the depth map of the viewport of each detected camera. These depth
maps are filtered to ensure a global consistency. At this point the
mesh is created by fusing the depth maps [15]. A filtering step is
performed to clean the dense mesh and a decimation in which we
limited the number of vertices to 50k. It appears to be the best bal-
ance between keeping high geometrical details and providing good
performance during the registration step. Finally, the mesh is tex-
tured with a LSCM parametrization, generating a texture atlas [20].

3.3 Automatic face landmarking

An automatic landmark detection is then applied on the recon-
structed textured mesh (see Figure 4). We trained 5000+ facial im-
ages annotated with 66 landmarks in the Deep Alignment Network
(DAN) [18]. The facial images include Helen, LFPW, and 2300
frontal face images extracted from the Multi-PIE database [14]. The
landmarks detector captures the viewport image of our 3D mesh
viewer and predicts 66 facial landmarks via the retrained DAN
model. To simplify computation, the viewport is captured using
an orthographic camera. The predicted 2D landmarks are back pro-
jected to the facial mesh in the 3D viewer by ray-triangle (or ray-
point) intersection algorithm. To get better jaw line landmarks, we
also run the DAN algorithm on both side views, left and right. As
the prediction of their positions is more precise and accurate on the
side views, these are the values we trust. Positions of the other
landmarks (eyes, eyebrow, nose, mouth and chin) are taken from
the prediction of the front-view picture.

Figure 4: Automatic facial landmarking. Based on DAN, 66 land-
marks are computed from the frontal view of the facial mesh.

3.4 Iris Color Extraction

Within this next step of our pipeline, and based on the previously
computed landmarks, the mean color value of the eye iris is ex-
tracted. Due to its vibrant colors and its texture, the iris is the most
visible and distinguishable part of the human eye [27]. We consider
it as an extra geometry of the mesh and animate it using dynamic
UVs. The eye texture is separated from the facial mesh one. Based
on the front view of the mesh and the set of 2D landmarks, we first
compute the convex hull of the six landmarks of the right eye. We
use this convex hull to create a binary mask to crop the input image
to isolate the eye. We convert the image in the HSV representa-
tion. As the human iris ranges from light blue to dark brown, we



create lower and upper color bounds to get rid of the sclera (eyes’
white) and the pupil. We create a mask out of these bounds and
crop the eye image. We then average the remaining pixels to get a
mean value of the iris color. This mean color value is finally used
to color a generic eye texture with black and white iris. Results
are presented on the figure 5. From light to dark eyes, colors are
correctly identified even if blue is more seen as blue-grey. The left
part of each figure element is the raw rendered character on which
we run the iris color extraction algorithm. The top right one is the
computed color and the bottom right, the colored iris we obtain.

Figure 5: Results of the automatic iris color extraction.

3.5 Registration and blendshapes transfer

The goal of this step is to register the generic face mesh to the re-
constructed one. This will allow to move the vertices of the generic
mesh to make its geometry like the reconstructed mesh (see Fig-
ure 6). Using the approach of Sumner et al. [35], we morph the
generic mesh to the reconstructed mesh by solving per-vertex affine
transformation. The landmarks, computed previously, constraint
the optimization process which corresponds to an iterative closest
point algorithm (ICP) with regularization. The triangle correspon-
dence is computed and for each vertex of the generic face mesh, we
have the corresponding point on the photogrammetry mesh. This
point, which is not a vertex, is expressed in barycentric coordinates.

Using this correspondence, we transfer the blendshapes from the
original generic to the morphed generic with preservation of the
connectivity between triangles [34]. Since people are more sensi-
tive to changes around the eyes and the mouth [6], we also include
the high-level facial feature lines which enable to better transfer the
intensity of the blendshapes [43]. Blendshapes transfer can be per-
formed in exactly three minutes for 102 blendshapes. This set can
be reduced for a VR usage. Results are presented on Figure 7.

Figure 6: The generic mesh (center) is registered on to the raw pho-
togrammetry mesh (left). Result of the retargeting is shown on the
right. Texture is also transferred to the retargeted mesh using corre-
spondence based on barycentric coordinates and continuous texture.

3.6 Extra geometry transfer

Most of the internal geometry elements, such as eyeballs, jaws,
teeth, tongs and nostrils are more complex to register due to the
lack of information onto the scans (i.e. only the visible external
elements are reconstructed). To generate high-quality characters,
these elements must be considered. To do so, we use a rigid align-
ment method to translate, rotate and scale these elements from our

Figure 7: Results for some blendshapes transfer from the source
template character to three different characters.

generic mesh to the morphed mesh. A binary mask is applied
to the generic mesh to exclude some parts from the registration.
Each masked element is retargeted individually by aligning the two
generic and reconstructed outliers using the best-matching similar-
ity transform between them. It minimizes the squared distances be-
tween source points’ outlier and their corresponding target points
(see Figure 8).

Figure 8: Results of the automatic transfer of extra geometry includ-
ing eyeballs, jaws, teeth, tong and nostrils.

3.7 Face fitting to the generic mesh

Finally, the morphed facial mesh has to be merged back to the body
(more precisely to the head, see Figure 2). While there still is a ver-
tex to vertex correspondence between the two meshes (the topol-
ogy has been preserved), the scale and the geometry of the face has
changed. Hence a method to merge the two meshes is required.
First, a rigid transformation is computed to align the reconstructed
mesh to the generic face one [36]. The computation is based on the
landmarks of the two meshes. The merge between the reconstructed
face and the hood is based on the method proposed by Deng et
al. [10]. The smoothing is however performed differently since we
want to keep the border of the hood. Artifacts are often generated at
the edge of the forehead because of the hairs (see Figure 9). They
are smoothed by aligning the tangents of the mesh boundary to the
ones of the forehead. This step may create a hole between the hood
and the forehead. The hood is vertically adjusted with an FDD box
to remove the distance between the forehead and the hood [31].

3.8 Results

A benchmark of the fully automatic pipeline is presented and output
results are discussed.



Figure 9: The reconstructed face is merged to the boundary of the
hood (left). A smoothing is performed to remove artifacts due to the
hairs. Because of the smoothing, a gap may appear between the
forehead and the hood. The hood is adjusted with a FDD box.

3.8.1 Benchmark 3D reconstruction

To evaluate the quality of the reconstruction, we ran our pipeline
under various conditions. The pipeline was evaluated until the reg-
istration and blendshape transfer step (Section 3.5). The aim of this
benchmark is to determine the minimal configuration (i.e. number
of cameras and image resolution) that provides the best visual facial
mask that can be merged to the generic body.

We tested four camera configurations (3, 5, 9 and 14 cameras)
and three resolutions: 100% (5184x3456), 50% (2592x1728) and
25% (1296x864). Pictures of nine individuals were used in this
test. Starting from five cameras, success rate of reconstruction with
a resolution of 5184x3456 or 2592x1728, is 100% (see Figure 10).
If the number of camera or image resolution decreases, the recon-
struction may fail because not enough image descriptors are found.
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Figure 10: Success rate of the reconstruction.

Computation time increases almost linearly with the number of
cameras and the image resolution (see Figure 11). The longest dura-
tion is about 25 minutes (1536s, 14 cameras and highest resolution).
It may be reduced to 4 minutes (252.66s, 5 cameras and resolution
of 2592x1728).

Results were visually inspected under all these conditions (see
Figure 12). The Hausdorff and maximum distances regarding the
reference mesh (14 cameras and resolution of 5184x3456) were
also computed. They are estimated in millimeters by computing
the ratio between the average inter ocular distance (60mm) and the
mesh inter ocular distance. No difference is visible with a recon-
struction with at least five cameras. With three cameras, parts of
the face may be missing (i.e. the cheeks). The average maximum
distance with five cameras is about 22mm for the three resolution
conditions (see Figure 13). These results are acceptable for our spe-
cific scenario and therefore, in any application for which the user’s
face only is required.

The conclusions of this benchmark are that we strongly recom-
mend not to use the third resolution (1296x864). It is too low to
generate good meshes and textures due to bad descriptors precision
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Figure 11: Computation time in seconds with four camera configura-
tions and three different image resolutions.

on the images. The second resolution (2592x1728) has impercep-
tible or very low differences with the highest one. We would also
strongly recommend not to use three cameras. Five and above ap-
pear to be the minimum to get precise results. In parallel, we also
evaluate the use of High and Normal SIFT descriptors in Mesh-
room and Normal SIFT fails too often to be considered as a serious
candidate. In resume, five cameras with a resolution of 2592x1728
appears to be the best good trade-off between quality and computa-
tion time.

Figure 12: Example of benchmark results. From top to bottom, the
number of cameras is 3,5,9,14, and from left to right the resolution is
100% (5184x3456), 50% (2592x1728) and 25% (1296x864). Haus-
dorff distance (left picture) is from the top bottom mesh.

3.8.2 Reconstructed character

Figure 14 shows output results of our pipeline with the configura-
tion defined above. The full process is about seven minutes with
a computer embedding a Xeon E5-2640, 32 GB of DDR3, and a
Nvidia GeForce 1080 GTX. The reconstructed face is fit to the as-
tronaut mesh suitable for any VR experience. Since the generic
character is already rigged, the personalized one can be easily an-
imated. Besides twenty blendshapes for controlling facial expres-
sion are also present (more could be added but it increases pro-
cessing time). Eyes movements and blink are rendered thanks to
dynamic UVs.

The pipeline is focused on facial reconstruction. While the ex-
ample of the astronaut is well adapted because of the hood, the
approach is suitable to any mesh. It is an artistic choice to select
a mesh on which a face can be easily merged to though. Having
the full head retargeted would be easier to merge back to a generic
body (i.e. the boundary would be the neck). This enhancement
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Figure 14: Results obtained from our pipeline. For each pair, the left
image is the front captured picture and the right image is the final
character.

is considered, but more research on the hair should be conducted.
Currently facial hair is directly baked into the texture and the mesh
geometry. The extension of the full body is also planned with the
challenge to deal with the clothes. Indeed they will hide the actual
user’s morphology.

4 FACIAL STYLE TRANSFER

Depending on the target application, the photorealistic mesh from
our pipeline may not be adapted to the visual style of a content or to
a specific narrative. For instance, one would may look like a dwarf
or an elf in a heroic fantasy world, or like an alien in a space opera.
In this context, the question we want to address is, to what extent
one’s face can be customized? Besides, how different the target
style face can be from a human face?

The point of this customization is to be able to recognize one’s
face in a non-human face. It is largely inspired from the James
Cameron’s Avatar movie in which actors can be recognized in their
avatar equivalent (i.e. the Na’vi). From the literature, we identified
that hair, face outline, eyes and mouth (not necessarily in this order)
are important for perceiving and remembering faces [8]. Also, the
most variable traits are within the triangular shape that connects
the eyes, mouth and nose [33]. Our hypothesis is that these facial
features allow to recognize an individual in a way similar that a
caricature can be recognized ([4]).

To fulfill this goal, we propose two adaptation processes of the
reconstructed facial mesh: a deformation of the geometry and a
transformation of the texture. Our approach is illustrated with fa-
cial meshes reconstructed from our pipeline and non-human facial
meshes extracted from Mixamo2.

2https://www.mixamo.com

4.1 Geometry deformation

As mentioned above, the shape of a face is a key component of
its style. Therefore, to transfer the style of one’s face to another,
we transfer its geometrical particularities, whether it is the size of
the jaw, the angle of the nose, or the eye-to-eye distance. Since
our reconstructed meshes and the non-human faces have different
topologies, a correspondence must be found. This process is per-
formed in a way like the one described in Section 3.3 and 3.5. In
the case of non-human meshes, facial landmarks were manually set.
Once all the meshes have the same topology, it is possible to apply
vertex-to-vertex operations.

To capture the particularities of human faces, we compute their
variations from an average human model. The average model was
generated with MakeHuman3 with the default settings (see Fig-
ure 15). This mesh was given the same topology as the others.
The features of one’s face are defined as the vertex-to-vertex dis-
tance between the reconstructed mesh and the average mesh. This
distance is then applied to the non-human face:

M = Mn +w(Mh −Ma) (1)

where M is the set of vertices of the final facial mesh, Mn is the
set of vertices of the non-human mesh, Mh the set of vertices of
the human mesh and Ma the set of vertices of the average human.
A weight w can be applied to accentuate the geometrical features
given by the distance. It is also used to compensate the size differ-
ence between the human and non-human face.

Figure 15: Average mesh (left) and texture (right)

4.2 Texture adaptation

Our approach builds upon the work of Champandard et al. [7] who
make use of a semantic mask to constrain the style transfer from a
specific zone of an image to another image. Since we use a com-
mon topology for all the meshes, we also convert the textures into
the same representation where the flatten face is centered and con-
tinuous.

A mask is computed from the landmarks triangulation, separat-
ing face parts in different semantic zones (see Figure 16). The mask
prevents wrong matches in the neural style transfer step: for in-
stance circular facial parts such as eyes and nostrils tend to often
mismatch, and the resulting error would be very noticeable.

Figure 16: Masks used to constrain the texture style transfer

Directly using Champandard et al.’s network to transfer the style
of the human texture to the non-human one produces a general mix

3http://www.makehumancommunity.org



of the two textures. To avoid this issue, we compute a relative style
transfer, using a third texture, corresponding to an average human
facial texture (see Figure 15). We use here the texture of a CG char-
acter having an artificially flawless skin. Hence facial features such
as hair, scars or wrinkles are transferred. The style loss function of
the neural network is modified as follow, to minimize the relative
style difference.

argmin((style(texS)− style(texSav))wstyle

− (style(textSC)− style(texC)))2
(2)

With texS the style texture (i.e. the non-human texture), texC the
content texture (i.e. the human texture), texSav the style average
texture, and texSC the output. The non-human texture is the starting
point of the output texture. Enforcing the relative style becomes a
global loss and there is no longer any reason to use a content loss.
Individual features are thus transferred, such as the skin tone, facial
hair and wrinkles, as depicted on Figure 17.

Figure 17: Texture style transfer. Left column: original non-human
texture; middle: result; right: human texture.

4.3 Pilot User Study

A pilot user study has been conducted to identify the limits of our
approach. Our hypothesis is that one’s face transferred to a non-
human mesh can be recognized.

4.3.1 Experimental data

We ran our process onto nine human faces (see Figure 18), six have
been captured from our rig and three are CG faces. We also used
the style of five non-human faces (bottom right row). The geomet-
ric style w was set to 1, and the textural style wstyle to 1.75. The
process took 100ms for the geometry deformation and 1.5h for the
texture adaptation (1000x1000 pixels) with a Xeon E5-2687W, 32
GB of DDR3, and a Titan X Pascal. The six non-human faces were
chosen to highlight the possibilities of our approach. A and B have
a humanoid morphology, C have wide mouth but no nose, D is a
mix between a beast and a humanoid, and E does not have any hu-
manoid features at all.

4.3.2 Protocol

We asked each participant to recognize one’s face among nine
styled faces (see Figure 19). The person’s face to be found is dis-
played as well as the non-human template mesh. Five human faces
had to be recognized within the five possible styles. We did not use
all the nine human faces to avoid a learning effect and to prevent
participants from choosing by elimination. We also asked them to
recognize people based on the geometry only (i.e. without textur-
ing), on the texture only (i.e. with the texture applied on the average

Figure 18: Experimental data. Left columns are the input human
faces and the bottom row on the right is the non-human faces.

human mesh), and on both the geometry and the texture. This al-
lows to measure the impact of geometry and texture on face recog-
nition. Hence, they had 25x3 = 75 faces to recognize. They were
free to take the required time to accomplish the task. Besides they
could control the camera to examine each model.

Figure 19: Experimental conditions: geometry only (left), texture only
(center) and geometry with texture (right). Participants were asked to
recognize one individual among the nine propositions. The template
non-human face is also displayed.

4.3.3 Results

12 naive participants have taken part into the experiment (age
x̄ = 40,σ = 8.59, 1 female). They have no expertise in computer
graphics or in face recognition. Recognition rates of the human
faces are plotted on Figure 20 and 21. Results were analyzed with
an exact binomial test, which performs an exact test about the prob-
ability of success in a Bernoulli experiment (also used in [32]). In
our context, the null hypothesis represents the probability that a

correct answer has been randomly chosen with a chance of 1
9 .

As expected the recognition rate is higher with the style applied
on both the geometry and the texture. Figure 20 shows that the task
was not obvious since only face #7 was recognized by slightly more
than 50% of the participants. It has to be noted that the expression
of the model is not neutral, a light smile is visible. This expression
is also visible on the styled mesh, which may guide the recognition.

These results can be explained by the fact that the recognition
rate with some non-human meshes was particularly low. Results
are more interestingly represented on Figure 21. It is clearly shown
that non-human faces, too far from the humanoid shape, are hardly
recognizable. Higher performance rate was achieved with mesh B
(65.45%). While meshes such as C or E, for which there is no nose
and the mouth is heavily deformed, cannot be recognized.

4.3.4 Discussion

As expected, the combination of both geometrical and textural style
allows a better recognition. Textures seems to provide less style
information that geometry with our current approach. Results also
shows that recognition depends on the style of the non-human face.
In our test, face B obtains better recognition results than the others,
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Figure 20: Recognition rate of the human faces. Black lines rep-
resent the confidence intervals (0.95), and the stars are the signifi-
cance (p < 0.05).
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Figure 21: Recognition rate of the human faces regarding the non-
human models. Black lines represent the confidence intervals (0.95),
and the stars are the significance (p < 0.05).

which could be explained by its high similarity to a human face.
On the opposite, C and E the faces whose aspect is the furthest
from human ones performs the worst. Their lack of nose, and their
heavily deformed mouth seems to be the reason, as they are features
deemed important for facial recognition.

Although our approach is a first step toward the stylization of
human faces, deeper investigation would require more user studies
to reduce the confidence interval, and to test different geometric
and textural style weights. Also the choice of the average human
has a strong influence on the style transfer results. Average mesh
and texture have to be carefully selected to not add artifacts. Yet the
customization of one’s character seems to be limited to humanoid
faces that are not too different from a human one. This is in line
with the literature in neurobiology assessing that our brain is not
adapted to the fine recognition of other species [33].

5 CONCLUSION & PERSPECTIVES

We presented a fully automatic pipeline for generating high-quality
facial rigs. From a set of input photos and a generic full-body char-
acter, this pipeline outputs a fully rigged character ready to be in-
tegrated into any real-time engine or other 3D application in less
than seven minutes. Compared to existing approaches, it is strongly
focused on facial feature acquisition (geometry, iris, texture) and
generation (blendshapes, jaws, teeth, etc.). The benchmark we per-
formed on our capture setup provides useful guidelines to setting
up the ideal configuration and parameters for a specific target ap-
plication.

We also proposed a new method to apply a style to the recon-
structed face. Using a template non-human mesh as reference style,

we process the geometry and texture of the reconstructed face to
make it look like the non-human one. Results of a first pilot study
show that this approach is suitable for humanoid faces, but it is lim-
ited for non-human faces too far from the average structure of a
human one. Thus, the stylization of the character will be focused
on humanoid faces for the time being.

Our future work for extending this pipeline will be twofold.
First, the pipeline will be improved to capture hair and skin under
multiple lighting conditions. Second, it will be extended to capture
the full body in high resolution detail. Other aspects helpful in the
characterization of unique character facial features will be also in-
vestigated (i.e. hair or accessories) to further extend the possible
applications.

The proliferation of virtual reality and augmented reality into
mainstream consumer technologies will continue to bolster use
cases for personalized characters. In a world of spatialized mixed
reality computing, one can foresee the utility of a relatively inex-
pensive, automated acquisition pipeline for every person to create
and carry with them their own personal digital double for a variety
of applications – from entertainment, to communication, to retail
and beyond.
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