Devoir surveillé de Maths n°5

Exercice 1: (11 points)

Partie A

On considère l'équation différentielle (E) : $4y' + y = 1200e^{-1/4x}$ où y est une fonction de la variable réelle x, définie et dérivable sur R.

- 1. Déterminer la constante réelle α telle que la fonction h_1 , définie par $h_1(x) = \alpha . x. e^{-1/4x}$ solution de (E).
- 2. Résoudre l'équation différentielle (E_0) : 4y' + y = 0 et en déduire les solutions de (E).
- 3. Déterminer la fonction h solution de (E) qui vérifie h(6) = 0.

Partie B

On considère la fonction f définie sur [6 ;+ ∞ [par $f(x) = 300(x - 6)e^{-1/4x}$.

- 1. Déterminer la limite de f en $+\infty$.
- 2. Montrer que $f'(x) = 75(10 x)e^{-1/4x}$.
- 3. Étudier les variations de la fonction f sur l'intervalle [6 ;+ ∞ [et donner son tableau de variations.
- 4. Tracer la courbe représentative de *f* dans un repère orthogonal. (unités graphiques : 0,5 cm sur l'axe des abscisses ; 1 mm sur l'axe des ordonnées)

Partie C

Une société veut vendre des machines destinées à certaines entreprises. Le prix de vente minimal est fixé à 10 000 euros. Le nombre prévisible, *y*, de machines vendues, est fonction du prix proposé, en millier d'euros, *x*. Une enquête auprès de clients potentiels a donné les résultats suivants :

x _i : prix proposé pour une machine en milliers d'euros	10	12.5	15	17.5	20	25
<i>y_i :</i> nombre prévisible de machines vendues au prix proposé	100	85	62	42	28	11

- 1. a) Représenter les six points du nuage sur le graphique de la question B4.
 - b) On pose $z_i = \ln (y_i / (x_i 6))$. Donner les valeurs de z_i arrondies au millième le plus proche.
- c) Donner une équation de la droite de régression de z en x ; les coefficients seront arrondis au millième le plus proche.
 - d) En déduire une expression approchée de y de la forme $y = \alpha(x 6)e^{\beta x}$.
- 2. On admet dans cette question que le chiffre d'affaires est g(x) = x.f(x) pour $x \ge 10$, où x est le prix proposé en milliers d'euros et f la fonction définie dans la partie B. En étudiant les variations de la fonction g déterminer pour quel prix le chiffre d'affaires est maximal et donner la valeur du maximum.

Exercice 2: (9 points)

Deux machines M_A et M_B produisent, en grande série, des objets de masse théorique 180 grammes.

Partie 1

On note X_A (respectivement X_B) la variable aléatoire qui, à un objet pris au hasard dans la production de la machine M_A (respectivement M_B) associe sa masse en grammes. On sait que X_A (respectivement X_B) suit une loi normale de moyenne m_A (respectivement m_B) et d'écart-type σ_A (respectivement σ_B). Un objet est conforme si sa masse est comprise entre 178 g et 182g.

- 1. On donne m_A = 179,8 et σ_A = 1. Calculer la probabilité qu'un objet pris au hasard dans la production de la machine M_A soit conforme.
- 2. On donne m_B = 180 et on sait que 98% des objets fabriqués par la machine M_B sont conformes. Calculer l'écart-type σ_B (résultat arrondi au centième).

Partie 2

Dans la production totale, 40% des objets proviennent de la machine M_A et 60% de la machine M_B . La machine M_A produit 5% d'objets non conformes et la machine M_B en produit 2%.

- 1. On prélève au hasard un objet dans la production. Calculer la probabilité que cet objet soit conforme.
- 2. On prélève au hasard un objet dans la production et on constate qu'il est conforme. Quelle est alors la probabilité (arrondie au millième) que cet objet provienne de la machine M_A ?

Partie 3

On admet que 96,8% des objets de la production sont conformes. Les objets sont stockés par boîtes de vingt. On désigne par Y la variable aléatoire qui associe à une boîte prise au hasard le nombre d'objets conformes de cette boîte.

- 1. Donner les paramètres de la loi binomiale suivie par Y.
- 2. On choisit une boîte au hasard dans la production. Calculer la probabilité des événements suivants :
 - · tous les objets sont conformes ;
 - · au moins dix-huit objets sont conformes.

Partie 4

On admet que la variable aléatoire X qui associe à un échantillon de taille 100 sa masse moyenne en grammes suit une loi normale de moyenne m et d'écart-type 0,092. La valeur exacte de la masse moyenne m des objets étant inconnue, on prélève au hasard un échantillon de 100 objets dont la masse moyenne est 179,93g.

Déterminer un intervalle de confiance, au seuil de risque 10%, de la valeur de m.