Interrogation de Physique n° 2

1. Radioactivité (7 points)

L'iode 131 est un isotope très utilisé comme marqueur en biologie : ¹³¹₅₃ I est émetteur β⁻.

- 1. Définir l'émission β⁻.
- 2. Donner là composition du noyau d'iode 131.
- 3. Écrire l'équation nucléaire de désintégration de l'iode 131 en précisant les lois de conservation appliquées. On donne: 51Sb; 52Te; 53I; 54Xe; 55Cs.
- 4. Pour déterminer expérimentalement la période de l'iode 131, on pratique de la manière suivante : un échantillon d'iodure de potassium contenant une fraction d'iode 131 est placé sous un compteur et on note le nombre de désintégrations par seconde A à différentes dates t exprimées en jours. Les résultats sont rassemblés dans le tableau ci-dessous que l'on recopiera et complétera :

t (jours)	3	7	10	16	20	26
A (désintégrations /seconde)	2080	1475	1130	680	480	286
In A						

Déduire de ce tableau la constante radioactive λ de l'iode 131 et calculer sa période T.

5. On peut jeter légalement, avec les ordures courantes, une fiole contenant de l'iode 131 à condition que son activité soit inférieure à 1 Bq.

Au bout de combien de temps pourra-t-on jeter un récipient dont l'activité A_0 vaut 1 kBq à la date t = 0 ?

2. Diffraction de la lumière par un réseau (7 points)

Un réseau comportant 400 traits par mm reçoit un faisceau de lumière blanche (400 nm à 800 nm).

- 1. Quel est l'angle d'incidence i qu'il faut donner au faisceau pour que le faisceau d'ordre 1, émergeant, de longueur d'onde 600 nm soit perpendiculaire au réseau?
- 2. Calculer les angles d'émergence des limites du spectre d'ordre 1.
- 3. Peut il v avoir recouvrement avec le spectre d'ordre 2 ?
- 4. On place une lentille de distance focale 2.00 m après le dispositif ci dessus, l'axe optique de la lentille est perpendiculaire au réseau.
- a) On recueille l'image sur un écran dans le plan focal image de la lentille. Faire un schéma du dispositif.
 - b) Calculer la largeur du spectre d'ordre 1 obtenu.

3. Fission nucléaire (6 points)

Un réacteur d'une centrale nucléaire fonctionne à l'uranium enrichi (3% d'uranium 235 fissile et 97% d'uranium 238 non fissile).

1. Par capture d'un neutron lent le noyau $^{235}_{92}$ U subit la fission suivante : $^{235}_{92}$ U + $^{1}_{0}$ n --> $^{139}_{54}$ Xe + $^{94}_{x}$ Sr + z^{1}_{0} n.

235
₀₃LI + 1 ₀n --> 139 ₅₄Xe + 94 ₅Sr + 1 ₀n

- a) Calculez x et z pour équilibrer cette équation de réaction nucléaire.
- b) Calculez l'énergie libérée par la fission d'un noyau d'uranium 235. Exprimez-la en joule et en MeV.
- c) Quelle serait l'énergie fournie par la fission d'une mole de noyaux d'uranium 235. Exprimez-la en T.E.P. (tonne équivalent pétrole).

- 2. L'uranium 238 non fissile du réacteur se transforme par capture d'un neutron lent en un noyau radioactif.
 - a) Écrivez l'équation de cette réaction nucléaire. Quel est ce noyau?
 - b) Ce noyau radioactif subit deux désintégrations β pour arriver à un noyau fissile.

Écrivez les équations représentant ces deux réactions nucléaires successives et identifiez les noyaux formés.

Données numériques :
$$c = 3 \times 10^8 \text{ m.s}^{-1}$$
; $N = 6,022 \times 10^{23} \text{ mol}^{-1}$; $e = 1,602 \times 10^{-19} \text{ C}$; $1 \text{ T.E.P.} = 42 \times 10^9 \text{ J}$; $1 \text{ u} = 1,66 \times 10^{-27} \text{ kg}$.

Masse des noyaux participant à la réaction (en unité de niasse atomique)

noyaux	¹³⁹ ₅₄ Xe	⁹⁴ _x Sr	²³⁵ ₉₂ U	¹ ₀ n
masse (u)	138,888 2	93,894 6	235,013 4	1,008 7

Extrait de la classification périodique

Z	90	91	92	93	94	95	96	97
Symbole	Th	Pa	U	Np	Pu	Am	Cm	Bk