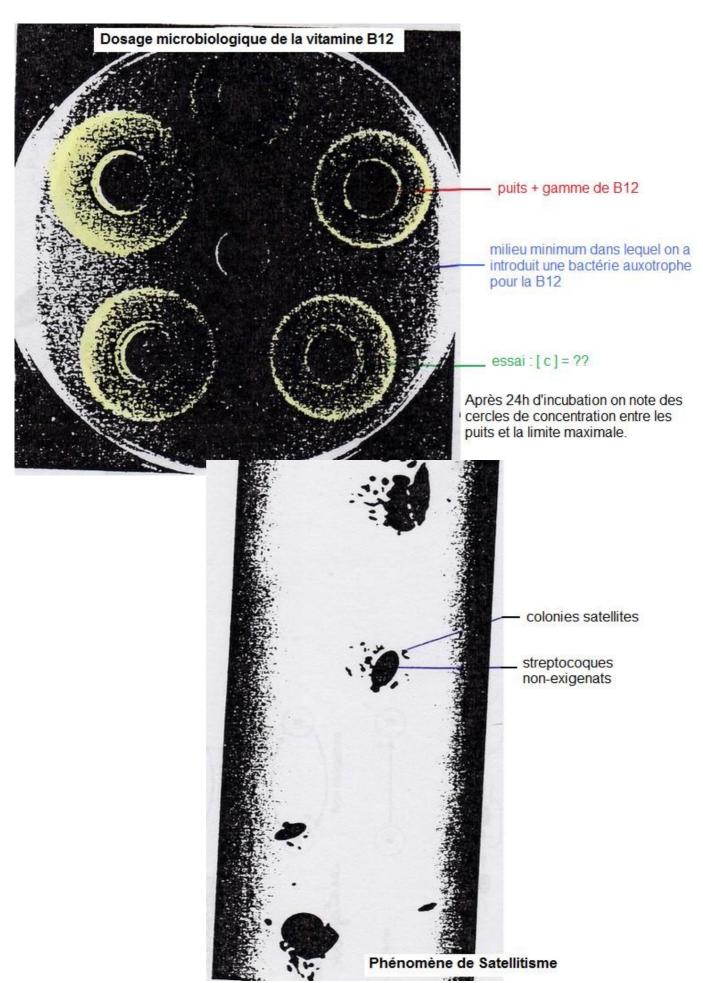
## **Besoins nutritionnels des Bactéries**

## Les besoins spécifiques

Étude d'un exemple : (+) = développement / (-) = pas de croissance

|                                                                                       | Escherichia coli | Proteus vulqaris |
|---------------------------------------------------------------------------------------|------------------|------------------|
| Milieu de base contenant<br>du glucose, une source<br>d'azote et des sels<br>minéraux | +                | -                |
| Milieu de base > Nicotinamide                                                         | +                | +                |
| Milieu de base + Extrait d'E. coli                                                    | +                | +                |
| Milieu de base + Substance<br>qui bloque la synthèse de<br>nicotinamide               | -                | -                |

### Principaux facteurs de croissance


| Facteurs de croissance                                              | Fonction ou coenzyme            | Organismes auxotrophes                                                       |
|---------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|
| Bases puriques ou pyrimidiques Adénine Guanine Uracile Thymine      | constituants des ac. nucléiques | Lactobacillus plantarum<br>Lactobacillus caseï.                              |
| Acides aminés Acide glutamique Lysine Arginine Tryptophane Tyrosine | constituants des protéines      | Lactobacillus arabinosus Sallmonella typhi                                   |
| Vitamines<br>B1-Thiamino                                            | cocarboxylase (TPP)             | Staphylococcus aureus<br>Lactobacillus fermenti                              |
| B2-Riboflavine                                                      | FMN, FAD                        | Lactobacillus caseï<br>Streptococcus hemolyticus<br>Clostridium tetani       |
| B5-Acide pantothénique                                              | coenzymeA                       | Lactobacillus<br>Proteus morganii<br>Zymomonas mobilis                       |
| B6-Pyridoxal                                                        | pyridoxal-phosphate             | Lactobacillus caseï<br>Streptococcus faecalis                                |
| B12-Cobalamines                                                     |                                 | Lactobacillus lactis<br>L. leichmanii<br>Euglena gracillis<br>Ochromonas sp. |
| PP-nicotinamide                                                     | pyridine-nucléotides            | Pasteurella pestis                                                           |

| Acide nicotinique       | pyridine-nucléotides        | Proteus vulgaris<br>Lactobacillus arabinosus                                                                     |
|-------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------|
| Acide pimélique         | bioline                     | Corynebacterium diphteriae                                                                                       |
| Acide folique           | formylation                 | Lactobacillus casei<br>Streptococcus faecalis                                                                    |
| Acide paraaminoenzoïque | acide folique               | Clostridium acetobutylicum<br>C. tetanomorphum<br>Acetobacter suboxydans                                         |
| Acide lipoïque          | transporteur d'électrons    | Lactobacillus casei<br>L. delbruckii<br>Clostridium tetani                                                       |
| Biotine                 | "coenzymeR" (carboxylation) | Lactobacillus arabinosus<br>Rhizobium trifolii<br>Streptocoques<br>Saccharomyces cerevisiae et autres<br>levures |
| Choline                 | synthèse des phospholipides | Pneumocoques type III                                                                                            |
| Hème (facteur « X »)    | synthèse des hémoprotéines  | Haemophilus influenzae<br>H. canis                                                                               |
| K3-Menadione            | transporteur d'électrons    | Mycobacterium paratuberculosis                                                                                   |

#### Interprétation du tableau:

D'après le comportement d'E. Coli on peut voir que cette bactérie est capable de se développer sur milieu minium à condition qu'elle puisse synthétiser le nicotinamide (molécule qui interviens dans la synthèse du NAD). Le nicotinamide est appelé « métabolite essentiel ». Proteus vulgaris va être incapable de se développer sur un milieu minimum. Il ne se multiplie que si l'on

Proteus vulgaris va être incapable de se développer sur un milieu minimum. Il ne se multiplie que si l'on ajoute au milieu du nicotinamide ou un extrait de cellule contenant du nicotinamide. Pour Pv, le nicotinamide est un « facteur de croissance ». On dit que Pv est auxotrophe pour le nicotinamide.



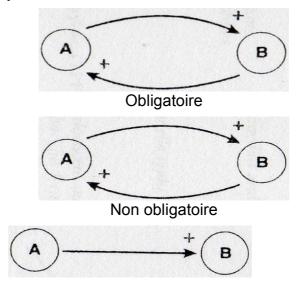
Culture profonde en gélose gélatine : la grosse colonie est un Streptocoque, les petites colonies satellites sont du genre *Corynebacterium*.

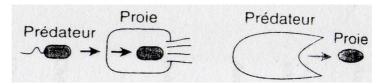
#### Différents types d'interactions entre organismes

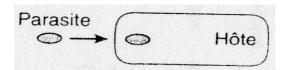
# **Type d'interaction**Mutualisme Symbiose obligatoire

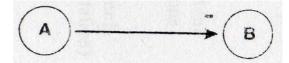
Protocoopération Symbiose non-obligatoire

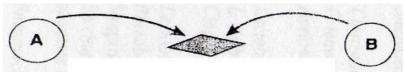
Commensalisme


Prédation


Parasitisme

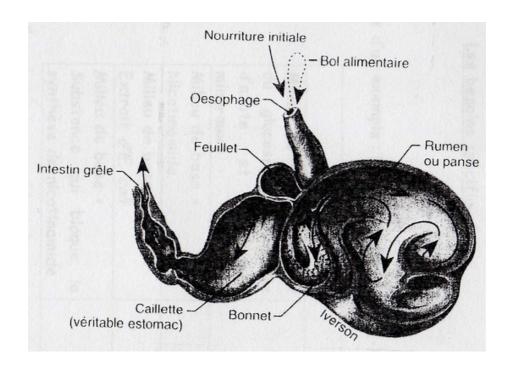

Amensalisme


Compétition

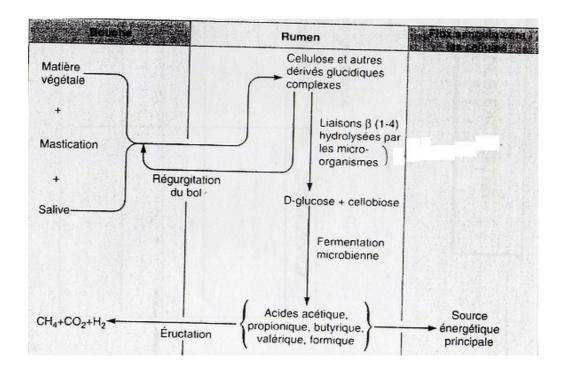

#### **Exemple d'interaction**










L'un supplante l'autre pour les ressources du site

#### Organisation de l'estomac d'un ruminant



#### La biochimie du rumen

